Magnetic field-induced intermediate quantum spin liquid with a spinon Fermi surface

In a quantum spin liquid, the spins remain disordered down to zero temperature, and yet, it displays topological order that is stable against local perturbations. The Kitaev model with anisotropic interactions on the bonds of a honeycomb lattice is a paradigmatic model for a quantum spin liquid. We explore the effects of a magnetic field and discover an intermediate gapless spin liquid sandwiched between the known gapped Kitaev spin liquid and a polarized phase. We show that the gapless spin liquid harbors fractionalized neutral fermionic excitations, dubbed spinons, that remarkably form a Fermi surface in a charge insulator.